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Abstract

Human tumor xenografts have been used extensively for rapid
screening of the efficacy of anticancer drugs for the past 35
years. The selection of appropriate xenograft models for drug
testing has been largely empirical and has not incorporated a
similarity to the tumor type of origin at the molecular level.
This study is the first comprehensive analysis of the tran-
scriptome of a large set of pediatric xenografts, which are
currently used for preclinical drug testing. Suitable models
representing the tumor type of origin were identified. It was
found that the characteristic expression patterns of the
primary tumors were maintained in the corresponding
xenografts for the majority of samples. Because a prerequisite
for developing rationally designed drugs is that the target is
expressed at the protein level, we developed tissue arrays from
these xenografts and corroborated that high mRNA levels
yielded high protein levels for two tested genes. The web
database and availability of tissue arrays will allow for the rapid
confirmation of the expression of potential targets at both the
mRNA and the protein level for molecularly targeted agents.
The database will facilitate the identification of tumor markers
predictive of response to tested agents as well as the discovery
of new molecular targets. [Cancer Res 2007;67(1):32-40]

Introduction

Human tumor xenografts have been extensively used for rapid
screening of the efficacy of anticancer drugs in the past 35 years
(1, 2). However, controversy exists about the usefulness of these
preclinical models in predicting response to therapy because many
reagents show high activity in these in vivo models yet are inactive
in the clinical setting (3). This controversy was further fueled by the
findings of the National Cancer Institute (NCI) that after 10 years of
extensive screening of compounds through preclinical models, only
a moderate predictive value was found for their xenograft models,
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and even less concordance was found between ir vitro testing data
and clinical usefulness (1).

For pediatric cancers, preclinical in vitro and xenograft model
systems have been used for drug screening with some success (3).
However, because of the rarity of pediatric cancers compared with
adult cancers, there has been little emphasis on developing these
models by pharmaceutical companies. Consequently, a substantial
proportion of pediatric phase 1 trials is being conducted with
limited or no prior testing of the agents in pediatric preclinical
models (4). Effective prioritization of new agents for clinical testing
using reliable preclinical models is especially important in pediatric
oncology drug development because of the limited number of
children with specific cancer types. Cancer remains the leading
cause of disease-related mortality in children >12 months of age,
with >2,200 children dying of cancer in the United States alone
each year. Future progress in identifying more effective treatments
for these children will depend on using reliable preclinical data to
select truly active agents for clinical evaluation from among the
much larger universe of agents that could be studied.

Several controllable factors contribute to the reliability of
xenograft models in predicting in vivo drug activity. However,
some factors are inherent to these model systems; for example,
differences in pharmacokinetic behavior of a drug in mice and
humans may render much higher doses of an agent tolerable in
mice, leading to a false prediction of clinical activity in humans.
Fortunately, these pharmacokinetic differences can be considered
and accounted for when interpreting results from these models (3).
The use of individual xenograft models rather than a panel of such
models may reduce the predictive value because single models
cannot capture the inherent variability of the corresponding cancer
(5). In addition, certain xenograft models may be poor representa-
tions of their purported tumor type of origin. This discordance
between the clinical and preclinical entities may go unrecognized
because of inadequate biological characterization of the xenograft
models. Optimal use of xenograft models for drug testing requires
use of panels of xenograft models that closely mimic the biological
characteristics of their respective primary tumors and requires
consideration of pharmacokinetic differences of tested agents in
the human and mice. This report contributes to the optimal use of
childhood cancer xenograft models by the molecular characteriza-
tion of panels of xenograft lines representing many of the more
common cancers that occur in children. With this focus on a large
panel of models of several pediatric cancers, this study differs from
earlier investigations. A panel of 85 xenografts as models of adult
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cancers was analyzed by Zembutsu et al. (6). Other investigations
typically focused on single adult cancer types, such as prostate
cancer (7) or ovarian carcinomas (8). In most cases, a relatively
small number of samples were used. For example the work of Mintz
et al. (9) on pediatric osteosarcomas used only three xenografts for
the verification of expression profiles observed in primary cancer
tissues. An analysis of the protein transcription of selected markers
was done by Fichtner et al. (10) but this study did not include a
genome-wide analysis of expression levels.

A 2001 meeting organized by the NCI and the Children’s
Oncology Group identified the need for a systematic approach to
pediatric preclinical testing to allow the identification of preclinical
models that can be used to reliably inform clinical prioritization
decisions (11). An early step in implementing the recommenda-
tions of the meeting was the Pediatric Oncology Preclinical
Protein-Tissue Array Project (POPP-TAP), a collaborative effort
between the NCI and the Children’s Oncology Group. Xenografts of
pediatric tumors were solicited for the POPP-TAP project and a
total of 75 high-quality xenografts representing eight tumor types
were collected. The majority of these xenografts will be used to
screen agents for anticancer activity (11). Objectives of POPP-TAP
included developing xenograft tissue microarrays (XMA) for
protein expression of a panel of pediatric xenografts and also
determining the gene expression profiles of these preclinical
models. This study contributes a molecular characterization of a
large panel of pediatric xenograft models and determines the
extent of their similarity to a set of corresponding primary tumors.
In the course of this study, a few xenografts were identified that
were not good representations of their primary tumors (ie., their
mRNA profile did not capture the characteristic RNA signature
typical for the primary tumors), and these lines have been excluded
from further drug testing. This study also shows the use of the
xenograft transcriptomic maps along with that of XMA for the
discovery of potential new molecular targets applicable to specific
childhood cancers.

Materials and Methods

Xenograft, primary tumor, and cell line samples. Samples were
acquired through the Pediatric Preclinical Testing Program (PPTP)
established by the NCI. An open solicitation for xenografts was made
in the journal Cancer Research in November 2002. From this solicitation,
95 samples were received for microarray analysis and construction of
XMAs. All samples received required appropriate Institutional Review
Board and Material Transfer Agreement approval from the donating
institution. From these 95 tumors, we chose tumor types that had three
or more representative xenografts with high-quality RNA. Seventy-five
tumors met these criteria and were used for further analysis (Table 1;
additional data of the xenograft production are described in Supplemen-
tary Table S1).

RNA extraction, amplification, and labeling of cDNA. Total RNA was
extracted from the tumors according to the published protocols (12).
Agilent BioAnalyzer 2100 (Agilent, Palo Alto, CA) was used to assess the
integrity of the total RNAs extracted from all of the samples. Total RNA
from seven human cancer cell lines (CHP212, RD, HeLa, A204, K562, RDES,
and CA46) was pooled in equal portions to constitute a reference RNA,
which was used in all of the cDNA microarrray experiments (13). RNA was
subjected to one round mRNA amplification using a modified Eberwine
RNA amplification procedure (14). Next, an indirect fluorescent-labeling
method was used to label cDNA as described by Hegde et al. (15).

Fabrication of cDNA microarrays, hybridization, image acquisition,
and analysis. Sequence-verified cDNA libraries were purchased from
Research Genetics (Huntsville, AL), and a total of 42,578 cDNA clones,

Table 1. The number of samples for the various primary
tumors analyzed in this study
Samples analyzed
Tumor type Xenograft Primary tumor  Cell lines
Neuroblastoma 20 30 12
Rhabdomyosarcoma 10 21 3
Ewing’s 9 19 3
Acute lymphoblastic 10 — —
leukemia

Wilms’ Tumor 8 — —
Osteosarcoma 8 — —
Meduloblastoma 6 — —
Ependymona 4 — —
Total 75 70 18

representing 13,606 unique genes and 12,327 expressed sequence tags, were
printed on microarrays using a BioRobotics MicroGrid II spotter (Harvard
Bioscience, Holliston, MA). Fabrication, hybridization, and washing of
microarrays were done as described by Hegde et al. (15). Images were
acquired by an Agilent DNA microarray scanner (Agilent) and analyzed
using the Microarray Suite program as described (16), coded in IPLab
(Scanalytics, Fairfax, VA).

Data normalization, filtering, and hierarchical clustering. Gene
expression ratios between tumor RNA and reference RNA on each
microarray were normalized using a pin-based normalization method
modified from Chen et al. (13, 17). To include only high-quality data in
the analysis, the quality of each individual ¢cDNA spot was calculated
according to Chen et al. (17). Next, spots with an average quality across
all of the samples <0.95 were excluded from all of the analyses. There
were 38,789 clones that passed this quality filter. All quality-filtered
clones (38,789 clones representing 17,349 unique UniGene clusters) were
then subjected to hierarchical clustering using a Euclidean distance
metric with average linkage (18). Hierarchical clustering was done using
the modified Eisen program, Gene Cluster 3.0, and Java TreeView
software.'' The entire data set for all 42,421 cDNA clones was released
through our Web site.'” This database allows investigators to make
simple queries of the data to extract gene expression profiles based on
IMAGE Clone ID, Gene ID (formerly LocusLink), Gene Ontology Terms,
Gene Ontology ID, Gene Symbol, UniGene ID, Clone Title, Cytoband, and
Chromosome.

Artificial neural networks and clone-cutter artificial neural net-
work. Feed-forward resilient back-propagation multilayer perceptron
artificial neural networks (ANN; coded in Matlab, The Mathworks, Natick,
MA) with three layers were used: an input layer of the top 10 principal
components of the data; a hidden layer with five nodes; and an output layer
generating a committee vote for each of the three input classes. A 4-fold
cross-validation scheme with 250 repetitions was used to create 250 “votes”
for each sample for each of the three classes (e.g., 0, 0, and 1 or 0.2, 0.8, and
0.3). An average of these ANN committee votes was used to classify samples,
and a sample was classified based on the maximum vote it received from the
three classes (13, 19). For ANN clone removal analysis, quality-filtered clones
were ranked by determining the sensitivity of prediction of the training
samples with respect to a change in the gene expression level of each clone.
Then, increasing numbers of the top-ranking clones (ie., the top-ranking
1,000, 5,000, 10,000, 15,000, 20,000, 25,000, 30,000, and 35,000) were cut or
removed from both the training and the testing sample data sets, and the
ANNs were retrained with the reduced gene sets. The sensitivities and
specificities for each of the shaved gene sets were calculated.

"' http://bonsai.ims.u-tokyo.ac.jp/ ~ mdehoon/software/cluster/software.htm#ctv.
' http://home.ccr.cancer.gov/oncology/oncogenomics/.
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The ANN rankings based on training on primary tumor or xenograft
expression patterns were compared using Spearman’s rank-order correla-
tion, r. The intrinsic statistical variability was estimated by randomly
splitting the xenograft data set (after removing the misclassified samples:

aRMS-X3, eRMS-X26, and NB-X66) into two data sets with the relative
number of tumor types kept constant and by calculating the gene ranking
for each of these. The correlation r was estimated from the coefficients
calculated by comparing primary with the xenograft gene ranking and

B
2
o
EWS-X73 i
EWS-XI110 o
EWS-X70 |— 3
EWS-X77 °
EWS-X109 <
EWS-X65
EWS-X68
EWS-X72
EWS-X71
EP-X22
EP-X14 -
EP—X24 = ) E8 e i Pl el T I g L] v e e ) . Y
[esTualualualunfunlunlus] valualueloaTer iy P
%%g%%%g%%g zzzzzzzzzzzzzzzggggz %gggg%g%
momw DO @ ww
*
C
100 b
m b
a | RMS !
70 b
&0 |
* = 50
* -X49 a0 |
WT-X43 £ ; —
WT-X44 "“_; o PO—O6—8—0—40—8—8—48
WT-X50 g ot
T-X4
w = 6 & ol NB
'E 70
T g ]
I : 2
= 40 |
S »
v 100
a0
a0
I 70
60
50
—h— Sensitivity
40 | —m— Specificity
*0 5 10 15 20 25 30 35
0S-X53 Number of top ranked genes removed (x 1000)
08-X36
O8-X56 [mmmy
08-X57 jomed
08-X58 —
O8-X60
08-X54
05-X59
Cancer Res 2007; 67: (1). January 1, 2007 34 www.aacrjournals.org



Expression Profiling of Pediatric Xenograft Models

A B! : e
95-Percentile ~
+*
- i
* o ».
o0 0 e ?
a1
1 o of b 5 ﬁ
b [] .‘ * c
o & 5 . 2
LN e 0 3
4 s &
e® Om ~ ® Tumors =
o ® W Xenografls
w By ColLines
= % Random Level
\/’k 05 \-‘
1 10 100 1000 10000

Number of randomly selected genes

Figure 2. A, multidimensional scaling: multidimensional scaling plot of the 61 neuroblastoma samples (35). Each sphere represents one sample. ®, primary tumor
samples (n = 30); W, xenografts (n = 19); #, cell lines (n = 12). Multidimensional scaling is a method to visualize high-dimensional data (here, ~ 38,789 expression
points) in lower dimensions (here, three dimensions), keeping the distance between samples as unchanged as possible. It is used here solely for visualization

purposes. The findings reported in the main text are based on the numerical analysis of the distances in the 38,789-dimensional space. B, similarity scaling: the fraction
of cases, in which the expression pattern of N randomly selected genes was more similar in xenograft models rather than cell lines compared with primary tumors.

For each size, 1,000 iterations with different random genes were probed; the Euclidean metric was used for the comparison (see Materials and Methods).

xenograft with xenograft gene rankings, respectively. The P value indicating
nonrandomness of an observed correlation coefficient r was estimated
using Students distribution with

N -2

t=
1—r2

and N — 2 degrees of freedom (20).

Numerical methods for similarity metric between primary tumor,
xenograft models, and cell lines. To measure the similarity between
different samples (el and e2), the Euclidean metric

was used, where the sum runs over N genes. With this metric, a smaller
distance indicates that two samples are more similar. The distance between
two sets A and B of genes was defined as

D(A,B) = | > (dap)?
aeAbeB

When comparing a set to itself (4 = B), this distance measures the spread
of the individual samples within the set. When comparing two sets,
xenografts X and cell lines C, to a third set of samples, primary tumors
P, the set X was said to be more similar to P when D(X,P) < D(C,P). To test
how dependent such a result was on the specific choice of genes used in the
comparison, the numerical experiment was repeated for different randomly
selected subsets of genes. For various subset sizes, the fraction of cases out
of 1,000 repeats for which D(X,P) < D(C,P) was counted. The same type of
experiment was done using the Pearson’s correlation as a metric. When
comparing two sets, the average correlation coefficient (as opposed to the

average squared distance used with the Euclidean metric) was used. The set
X was said to be more similar to P than the set C if D(X,P) > D(C,P) with the
correlation as the metric.

Identifying cancer-specific gene targets. Differentially expressed genes
were first identified by doing a ¢ test analysis to identify genes whose mean
ratio was significantly higher in xenograft compared with normal tissues
(n = 76 samples). Clones were selected using the criteria that the Bonferroni
adjusted P values was < 0.01 (rz = 14,489). Next, the list was further filtered
by requiring that the median ratio in xenografts be five times greater than
the median ratio of normal tissues (n = 248). Any clone that belonged to
either zero or multiple UniGene clusters or expressed sequence tags was
then removed (remaining, » = 157). Finally, redundant clones in UniGene
cluster represented by multiple clones were removed by removing all but
the highest ranked clone (n = 120).

XMA construction. Frozen xenograft samples were defrosted to room
temperature >5 min, sectioned to appropriate thickness (2-3 mm), placed in
processing cassettes, and fixed in 70% ethanol at 4°C (21). Ethanol was
chosen as a fixative instead of formalin because it is useful for downstream
proteomic analysis as planned (22) and offers many advantages as follows.
Ethanol is a non-cross-linking fixative that can be used to replace formalin
where recovery of native proteins and intact nucleic acids is desired. In
addition, immunohistochemistry on ethanol-fixed tissue requires less or no
antigen retrieval compared with formalin-fixed tissues. In addition, a greater
fraction of antibodies doing well in Western blot can be used when comparing
ethanol-fixed to formalin-fixed tissue. Our choice thus makes the XMA
particularly suitable for testing antibodies not commonly used in immuno-
histochemistry (21). However, we will also offer a XMA built with formalin-
fixed tissues, which allows the use of conventional diagnostic antibodies.

After ethanol fixation for 48 h, the specimens were processed and
infiltrated with paraffin and subsequently embedded for sectioning. H&E
sections were made of each xenograft and reviewed to select appropriate
areas (zones without necrosis) of the xenograft for arraying. The XMA was

Figure 1. A, hierarchical clustering of xenografts. All quality clones (N = 38,789) of the preclinical pediatric xenograft models were subjected to hierarchical clustering
with average linkage using Pearson’s correlation coefficient as the metric. Distinct colors were used for each tumor type to enhance readability. *, xenografts that
did not cluster with the majority of the same cancer type. Solid vertical lines, two pairs of samples each derived from a common cell line (SK-N-AS: NB-X75 and
NB-X107; SMS-KCNR: NB-X75 and NB-X108) but obtained from different laboratories (see Supplementary Table S1) and derived from the s.c. (X75 and X107) or
orthotopic (intra-adrenal; X108 and X107) route. B, ANN average committee votes from a feed-forward resilient back-propagation multilayer perceptron ANN with three
layers: an input layer of the top 10 principal components of the data; a hidden layer with five nodes; and an output layer generating a committee vote for each

of the three input classes. C, clone cutter: sensitivity and specificity with increasing number of the top-ranking clones removed from the training and testing data
sets. Quality-filtered clones were ranked by determining the sensitivity of prediction of the training samples with respect to a change in the gene expression level of each
clone. Then, after classification using the clone-cutter ANN, the sensitivities (true positives) and specificities (true negatives) of the ANN to predict the xenograft samples
were calculated with each successive removal of the top-ranking ANN clones and plotted.
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Figure 3. A, identifying cancer-specific gene targets: heatmap of median tissue and tumor values for 120 differentially expressed genes between xenografts and
normal tissues. A combination of t test (Bonferroni adjusted P < 0.01) and fold change (>5) filtering identified 248 clones, which mapped to 157 unique UniGene
clusters, out of which 120 were known genes. Many of the genes belong to the functional annotation categories of cell cycle, cell division, DNA metabolism, and other
gene ontology annotations that would suggest good therapeutic targets (Supplementary Table S4). B, tissue microarray image: positive CDK6 stain (nuclear) of a
xenograft derived from a neuroblastoma cell line (SK-N-DZ). Original magnification, x200. C, comparison of RNA expression and protein expression from gene
expression microarrays and tissue microarrays, respectively. The data for the protein expression is the fraction of total cells that stained positive as measured by the
Aperio ScanScope. Both the RNA and the protein expression data were z scored before heatmap visualization. Samples with missing cores on the tissue microarrays

were excluded.
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constructed as described previously (23), using 1.00-mm needles on a
Beecher manual tissue microarrayer MTA-1 (Beecher Instruments, Sun
Prairie, WI). The resultant recipient XMA block was sectioned into 5-um
sections with the aid of an Instrumedics tape sectioning system (St. Louis,
MO). Our XMAs are available for investigators to confirm the protein
expression levels of their own target(s) of interest. We strongly encourage
submission of the images of the immunostains of the XMA to our databases
as we have done.

Immunohistochemistry and scoring. Immunohistochemistry was
done according to standard protocols as described previously (24). The
antibody against CD45 was obtained from DAKO (Carpinteria, CA) and used
at titers with incubation times as follows: prediluted, 60 min, room
temperature; anti-cyclin-dependent kinase 6 (CDK6) was obtained from
Santa Cruz Biotechnology (Santa Cruz, CA) and used at 1:50 titer with an
overnight incubation time at 4°C. Preceding treatment of the slides was an
antigen retrieval at 95°C for 25 min with antigen retrieval solution (DAKO),
endogenous peroxidase blocking, and unspecific binding blocking. All
antibodies were detected with the LSAB2 system and 3,3 -diaminobenzidine
as the colorizing step (DAKO). Inmunostains were reviewed both manually
and with the aid of automated image analysis. An Aperio T2 Scanscope
(Aperio, Vista, CA) was used to generate high-resolution images of the XMA.
These images were quantitatively analyzed (24) with Aperio image analysis
software using appropriate algorithms for membranous and nuclear
staining. For membranous staining, a ratio of the number of positive
(brown) pixels to the sum of all pixels was calculated. For nuclear staining, a
ratio of positive (brown) nuclei to the sum of all nuclei was calculated.

Web-based database. We have released the gene expression data from
the xenografts, tumor tissues, and cell lines'” as well as immunohistoche-
misty images. The web interface offers a broad variety of options for data
query, normalization, and visualization. It also offers an option to compare
the expression profiles to our expression database of normal human
tissues (25).

Results

Hierarchical clustering of xenograft models. To determine
the transcriptomic consistency among the panel of pediatric
xenograft models, cDNA microarray analysis was done on 75
preclinical pediatric xenograft models, 70 primary tumors samples,
and 18 cell lines (Table 1). All quality-filtered clones (38789; ref. 17)
were subjected to hierarchical clustering (18). Figure 14 shows that
the xenograft models primarily clustered according to their
prospective tumor types with the exception of 6 of 75 xenografts
analyzed. Of note, in two cases where xenografts were derived from
the same original cell lines but were propagated through distinct
pathways (s.c. and intra-adrenal in two different laboratories), the
corresponding samples clustered closest to each other, suggesting
that the global expression profile is not strongly affected by the
choice of the site of implantation. The xenografts that did not
cluster according to their tumor type were WT-X48, WT-X49, MB-
X38, NB-X66, aRMS-X3, and eRMS-X26.

ANN classification of xenograft models. To establish if the
xenografts maintained the characteristic expression pattern of the
primary tumors, cDNA microarray analysis was done on an
additional set of primary tumor tissue consisting of 19 Ewing’s
tumor, 22 rhabdomyosarcomas, and 30 neuroblastomas (Supple-
mentary Table S2). ANNs were trained with all of the quality-filtered
clones (38 and 789) in the primary tumors and then classified or
tested the respective xenograft samples (13, 19). In Fig. 1B, the
average ANN vote is shown for the xenografts (the test set). This
graph shows that the ANN predicted the respective xenograft
tumors based on the expression profiles present in the primary
tumors with the exception of NB-X66, aRMS-X3, and eRMS-X26. To
further show the similarity of the xenografts with the primary

tumors, the same analysis was done with the xenografts as the
training set (with the three misclassified samples removed) and the
primary tumors as the test samples. The resulting classifier was
able to classify all of the primary tumors correctly (Supplementary
Table S3).

To determine if the clones used by the classifier extended beyond
a particular small subset of clones or if there is a larger set of
discriminating clones, another ANN analysis was done, in which
the top ANN-ranked clones were sequentially removed. Figure 1C
shows that the sensitivity and specificity of the primary tumors to
predict respective xenografts remained at 100%, even with the
25,000 most informative clones, almost two thirds of the entire data
set, were removed. This analysis (referred to as clone-cutter ANN)
showed that many different subsets of genes were equally capable
of distinguishing the different tumor types.

Spearman’s rank-order correlation of ANN-ranked clones.
Our ANN analysis showed that it is possible to develop a broad
classifier on the model systems, which could in turn predict
primary tumors and vice versa. However, for many applications of
the xenograft expression database (e.g, the identification of
markers), it is necessary that the “importance” attributed to a
gene does not depend on whether it was estimated from xenograft
or primary tumor data. The weight of a genes contribution to the
classifier, the so-called ANN rank, is frequently used to select
potentially biological important genes (13, 19). The ranking of a
gene should therefore not differ when xenografts or primary
tumors were used to develop the classifier. The degree of similarity
of the ranking was determined by calculating Spearman’s rank-
order correlation between the list of ANN-ranked clones when
primary tumors were used to train the ANN and the list obtained
when xenografts were used for training. Although the observed
correlation r = 0.67 (P < 0.001) was smaller than a perfect
correlation r = 1, it was strong. Potential contributors for r < 1 are
statistical noise and true biological differences. To estimate how
much each contributed, the “normal” statistical fluctuation was
estimated by calculating the correlation between two lists without
systematic biological differences: xenografts were split in two
nonoverlapping groups and the rank order was estimated for each
group individually. The correlation for these two groups was 0.76
(P < 0.001), only moderately higher than r = 0.67 for primary
tumors/xenografts. This suggests that differences in the lists of the
ANN-ranked genes trained on either primary tumors or xenografts
are mostly of statistical nature and reflect only weakly systematic
differences in gene expression.

Multidimensional scaling and similarity metric between
primary tumor, xenograft models, and cell lines. Up to this
point, the overall high transcriptional similarity has been shown
between the xenografts and their respective primary tumor types.
An even more immediate way to measure the similarity of
expression profiles is to calculate the distance between expression
vectors using some metric. The average Euclidean distance
between all pairs of xenografts and primary human tumors was
E, = 0.622 £ 0.002. Obviously, such a pure number is difficult to
interpret because it lacks a scale. Comparison to another
established model system, cell lines, provided a reference point.
For additional 12 neuroblastoma cell lines, the average distance to
primary tumors was E. = 0.757 + 0.004. The difference between the
E, and E. >30 SEs, was highly significant with P < 0.0001 (20),
indicating that, compared with cell lines, xenograft expression was
closer to primary tumors. The experiment was repeated using
Pearson’s correlation r as the metric. Again, the xenografts were

www.aacrjournals.org
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significantly (P < 0.0001; ref. 20) more similar to the primary
tumors (1 — r = 0.43) than the cell lines (1 — r = 0.56). Figure 24
visualizes these results.

The global comparison does not exclude the possibility that only
a small, specific set of clones is more similar in the xenograft
models, whereas in the remaining transcriptome cell lines could
be equally similar or even closer to primary tumors. To address
this question, random subsets of clones were chosen and the
number of cases where the xenograft expression pattern was more
similar to the primary tumors than the cell lines was counted.
Subset sizes ranged from 3 clones to 2,000 clones with 1,000
randomly generated subsets for each subset size (Fig. 2B). Even
when selecting only three genes, the xenografts were closer to the
primary tumors in >80% of the cases. Interestingly, this value
increased quickly with the size of the gene subset; the 95% level
was achieved with only 10 genes. For sets as small as 100 random
genes, the neuroblastoma xenograft models were always found to
be more similar to the primary tumors than the cell lines.

Identification of potential therapeutic targets. One applica-
tion of the xenograft expression database is to identify uniquely
expressed genes, potential diagnostic markers, or targets for
therapy. The identification of such genes of interest depends on
the exact biological question and the method used to extract these
genes. For this reason, we have released the entire gene expression
data set to enable other researchers to develop their own optimized
queries and do simple searches and compare gene, the expression
level of that gene, with normal tissues. The data can also be
downloaded or queried using a versatile user interface on our Web
site.'> As one possible example of a gene identification, we
compared the xenografts with a previously published gene
expression database of normal organs. An on-line version of this
database is available online'® (25). It was found that 120 known
genes were up-regulated (Fig. 34) with many genes involved in cell
cycle, cell division, DNA metabolism, and other gene ontology
annotations that may be good therapeutic targets (Supplementary
Table S4).

One challenge in identifying biomarkers or drug targets based
on gene expression analysis is the fact that in some instances the
transcripts may not correlate with the protein levels due to post-
transcriptional and translational regulation (26, 27). The XMA
developed for this study thus enables a further selection of
potential markers based on protein expression. As a demonstra-
tion, we chose one established clinically useful markers, CD45
(Iymphoid malignancies), as well as one of the 120 up-regulated
genes, CDK6 (Fig. 3B). This cell cycle protein was chosen as
potentially “druggable” as it showed an elevated expression level
in the xenograft models for acute lymphoblastic leukemia,
meduloblastoma, rhabdomyosarcoma, and neuroblastoma. Auto-
mated image analysis of the XMAs provided quantitative data of
protein expression. A significant (P < 0.001; ref. 20) Pearson’s
correlation r between the protein signal and the mRNA level was
observed (Fig. 3C) for all tested genes: r = 0.42 (CD45) and r =
0.55 (CDK6). The images are also released in our on-line gene
expression database.'”

Discussion

A fundamental assumption in using human tumor xenografts as
models for preclinical anticancer drug development is that the

' http://ntddb.abee.nciferf.gov/cgi_bin/nltissue.pl.

xenografts closely resemble the corresponding primary tumors.
Previous studies have analyzed the similarity of xenograft models to
primary tumors by comparing specific biological phenotypes of the
primary tumor, such as tumorigenicity (28), tumor volume (29), or
DNA index (30). Here, we have taken a more systemic approach.
Rather than focusing on one specific aspect of tumor biology, we
quantified transcriptional similarities on scales ranging from only a
few genes to alevel of thousands of genes. We and others have shown
that such profiles reflect the overall biology of cancers (13, 25, 31).

The first step of our analysis was to do a global survey of our
expression data, which also served to ensure internal consistency
of the data set. Using hierarchical clustering, we verified that
specific tumor types have similar expression patterns to themselves
and that they clustered according to their respective tumor type.
Hierarchical clustering showed that the majority of the xenografts
grouped according to their specific tumor types (with the exception
of six xenografts), which also established the internal consistency of
our data set.

The second step was to formally validate that the expression
profiles of the xenografts reflect those of the corresponding
primary tumors. ANNs on three sets of tumors (Ewing’s tumor,
rhabdomyosarcoma, and neuroblastoma) were used to test if the
characteristic patterns discriminating different tumor types in
primary tumors were preserved in the xenograft models. The ANN
trained with profiles of primary tumors could accurately diagnose
the xenograft tumors for the majority of xenograft models. The
ANN rank assigned to a specific gene was similar regardless of the
samples (xenografts or primary tumors) used to train the ANN.
The variations of gene ranks between xenografts and primary
tumor-generated classifiers could be mostly explained by statistical
uncertainty. The stability of the ranking between model system and
primary tumor therefore suggests that the xenograft gene
expression database is an effective tool also for marker discovery,
particularly in combination with the XMA.

Next, we used the FEuclidean and Pearson’s distance of
expression profiles as the most immediate way to measure
profile similarity. The average distance of model systems from
primary tumors indicates how well the model represents the
primary tumor. Interestingly, the comparison of the results for
two clinical model systems in neuroblastoma revealed that
xenografts were significantly closer to primary tumors than cell
lines were. This suggests that this higher level of similarity on the
mRNA level may translate also to a higher level of similarity in
the physiologic response to a drug. Of particular importance in
this context is the finding that this higher level of similarity holds
not only on the systemic scale, the entire transcriptome, but also
for smaller, randomly selected sets of genes. Naturally, one can
think of a drug affecting the function of particular biological
pathways with only a modest number of genes involved. On the
scale of pathways (we used 100 genes in our experiments), we
observed that xenografts were closer to the primary tumors in all
of the 1,000 probed random sets of genes. Even on a “microscale”,
10 genes, this remained true in 95% of the cases. This finding may
have implications on the choice of model systems for the testing
of drugs, in that the xenograft models might be a better choice
especially when testing drugs with unknown targets or multiple
targets (i.e., so-called “dirty drugs”). In other words, this analysis
for neuroblastoma xenografts indicates that it is highly probable
to find a higher level of similarity to primary tumors not only for
a particular gene target or targets but also for the genes in the
context (i.e., the biological system), in which these targeted genes
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function. Because the transcriptional similarity reflects the overall
biology of the cancer (13, 25, 31), it is conceivable that a higher
level of transcriptional similarity would be additive to the
predictive value of the xenograft model system. Interestingly,
the neuroblastoma xenograft samples in this analysis were not
direct transplants but rather derived from cell lines. The observed
change of their expression profiles from that of cell lines toward
that of primary tumor tissues therefore suggests that this shift is
induced by the microenvironment emulated by the foreign host
organism. Still, the multidimensional scaling in Figure 24 clearly
indicates that significant systematic differences in expression
levels of primary tumors and xenografts remain. This is partially
explained by the fact that the human cDNA array in this study is
relatively insensitive to mouse RNA due to differences in the 3’
sequences of mouse and human RNA. A separate hybridization of
only mouse RNA to our microarray showed low signal intensities
(Supplementary Fig. S1). RNA from stroma cells or blood vessels,
which are present in both human and xenograft samples, are
therefore detected only in the primary samples. An analysis of the
differences as well as the pattern of the mouse stroma will be
subject of future studies.

Of note, the ANNs trained on tumor samples rejected the very
same xenografts (NB-X66, aRMS-X3, and eRMS-X26) that did not
cluster with their respective tumor type in the hierarchical
clustering, thus emphasizing the internal consistency of our data
and the concordance of our analysis. The NB-X66 and aRMS-X3
xenografts neither clustered nor classified with any other xenograft
tumors present in our analysis. In the hierarchical clustering, these
two xenografts shared a common and isolated branch, suggesting
that they share some common features, but not related to their
original diagnostic assignment, and thus would not be a good
model to test drugs targeted against neuroblastoma or RMS,
respectively. Of the remaining misclassified samples (eRMS-X26,
WT-X48, WT-X49, and MB-X38), the ANNs classified eRMS-X26 as a
Ewing’s tumor. Interestingly, eRMS-X26 was initially diagnosed as
embryonal rhabdomyosarcoma; however, review by others has
reclassified it as a primitive neuroectodermal tumor, which is a
member of the Ewing’s family of tumors (32). The presence of the
EWS-FLI translocation in this xenograft was confirmed by reverse
transcription-PCR analysis (data not shown). Therefore, our
transcriptomic analysis was able to correctly diagnose on a global
scale a xenograft that was initially misdiagnosed. The two Wilms’
xenografts (WT-X48 and WT-X49) and the medulloblastoma (MB-
X38) clustered with the rhabdomyosarcoma. This is not surprising
given the fact that both of these groups of cancers have been
reported on occasions to express muscle markers. Indeed,
meduloblastomas are a heterogeneous group of cancers and the
majority of reported cases in the literature have been biphasic,
containing both primitive neuroectodermal and rhabdomyoblastic
cells (33, 34). Within our database, all three of these tumors were
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